Selective Decoding for Cross-lingual Open Information Extraction

نویسندگان

  • Sheng Zhang
  • Kevin Duh
  • Benjamin Van Durme
چکیده

Cross-lingual open information extraction is the task of distilling facts from the source language into representations in the target language. We propose a novel encoder-decoder model for this problem. It employs a novel selective decoding mechanism, which explicitly models the sequence labeling process as well as the sequence generation process on the decoder side. Compared to a standard encoder-decoder model, selective decoding significantly increases the performance on a Chinese-English cross-lingual open IE dataset by 3.87-4.49 BLEU and 1.91-5.92 F1. We also extend our approach to low-resource scenarios, and gain promising improvement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MT/IE: Cross-lingual Open Information Extraction with Neural Sequence-to-Sequence Models

Cross-lingual information extraction is the task of distilling facts from foreign language (e.g. Chinese text) into representations in another language that is preferred by the user (e.g. English tuples). Conventional pipeline solutions decompose the task as machine translation followed by information extraction (or vice versa). We propose a joint solution with a neural sequence model, and show...

متن کامل

X-LiSA: Cross-lingual Semantic Annotation

The ever-increasing quantities of structured knowledge on the Web and the impending need of multilinguality and cross-linguality for information access pose new challenges but at the same time open up new opportunities for knowledge extraction research. In this regard, cross-lingual semantic annotation has emerged as a topic of major interest and it is essential to build tools that can link wor...

متن کامل

Cross-Lingual Dependency Parsing with Late Decoding for Truly Low-Resource Languages

In cross-lingual dependency annotation projection, information is often lost during transfer because of early decoding. We present an end-to-end graph-based neural network dependency parser that can be trained to reproduce matrices of edge scores, which can be directly projected across word alignments. We show that our approach to cross-lingual dependency parsing is not only simpler, but also a...

متن کامل

Bag-of-Words Forced Decoding for Cross-Lingual Information Retrieval

Current approaches to cross-lingual information retrieval (CLIR) rely on standard retrieval models into which query translations by statistical machine translation (SMT) are integrated at varying degree. In this paper, we present an attempt to turn this situation on its head: Instead of the retrieval aspect, we emphasize the translation component in CLIR. We perform search by using an SMT decod...

متن کامل

Neural Relation Extraction with Multi-lingual Attention

Relation extraction has been widely used for finding unknown relational facts from the plain text. Most existing methods focus on exploiting mono-lingual data for relation extraction, ignoring massive information from the texts in various languages. To address this issue, we introduce a multi-lingual neural relation extraction framework, which employs monolingual attention to utilize the inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017